Cross-Linkable Molecular Hole-Transporting Semiconductor for Solid-State Dye-Sensitized Solar Cells
详细信息    查看全文
文摘
In this study, we investigate the use of a cross-linkable organosilane semiconductor, 4,4鈥?bis[(p-trichlorosilylpropylphenyl)phenylamino]biphenyl (TPDSi2), as a hole-transporting material (HTM) for solid-state dye-sensitized solar cells (ssDSSCs) using the standard amphiphilic Z907 dye which is compatible with organic HTM deposition. The properties and performance of the resulting cells are then compared and contrasted with the ones based on poly(3-hexylthiophene) (P3HT), a conventional polymeric HTM, but with rather limited pore-filling capacity. When processed under N2, TPDSi2 exhibits excellent infiltration into the mesoporous TiO2 layer and thus enables the fabrication of relatively thick devices (5 渭m) for efficient photon harvesting. When exposed to ambient atmosphere (RHamb 20%), TPDSi2 readily undergoes cross-linking to afford a rigid, thermally stable hole-transporting layer. In addition, the effect of tert-butylpyridine (TBP) and lithium bis(trifluoromethylsulfonyl)imide salt (Li-TFSI) additives on the electrochemical properties of these HTMs is studied via a combination of cyclic voltammetry (CV) and ultraviolet photoemission spectroscopy (UPS) measurements. The results demonstrate that the additives significantly enhance the space charge limited current (SCLC) mobilities for both the P3HT and TPDSi2 HTMs and induce a shift in the TPDSi2 Fermi level, likely a p-doping effect. These combined effects of improved charge transport characteristics for the TPDSi2 devices enhance the power conversion efficiency (PCE) by more than 2-fold for ssDSSCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700