Magnetic Nanoparticle Mediated Enhancement of Localized Surface Plasmon Resonance for Ultrasensitive Bioanalytical Assay in Human Blood Plasma
详细信息    查看全文
文摘
We demonstrate that Fe3O4 magnetic nanoparticle (MNP) can greatly enhance the localized surface plasmon resonance (LSPR) of metal nanoparticle. The high refractive index and molecular weight of the Fe3O4 MNPs make them a powerful enhancer for plasmonic response to biological binding events, thereby enabling a significant improvement in the sensitivity, reliability, dynamic range, and calibration linearity for LSPR assay of small molecules in a trace amount. Rather than using fluorescence spectroscopy or magnetic resonance imaging, this study marks the first use of the label-free LSPR nanosensor for a disease biomarker in physiological solutions, providing a low cost, clinical-oriented detection. This facile and ultrasensitive nanosensor with an extremely light, robust, and low-cost instrument is attractive for miniaturization on a lab-on-a-chip system to deliver point-of-care medical diagnostics. To further evaluate the practical application of Fe3O4 MNPs in the enhancement of LSPR assay, cardiac troponin I (cTnI) for myocardial infarction diagnosis was used as a model protein to be detected by a gold nanorod (GNR) bioprobe. MNP-captured cTnI molecules resulted in spectral responses up to 6-fold higher than direct cTnI adsorption on the GNR sensor. The detection limit (LOD) was lowered to ca. 30 pM for plasma samples which is 3 orders lower than a comparable study. To the best of our knowledge, this marks the lowest LOD for a real plasma protein detection based on label-free LSPR shift without complicated instrumentation. The observed LSPR sensing enhancement by Fe3O4 MNPs is independent of nonspecific binding.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700