Contactless Surface Conductivity Mapping of Graphene Oxide Thin Films Deposited on Glass with Scanning Electrochemical Microscopy
详细信息    查看全文
文摘
The present article introduces a rapid, very sensitive, contactless method to measure the local surface conductivity with Scanning Electrochemical Microscopy (SECM) and obtain conductivity maps of heterogeneous substrates. It is demonstrated through the study of Graphene Oxide (GO) thin films deposited on glass. The adopted substrate preparation method leads to conductivity disparities randomly distributed over approximately 100 渭m large zones. Data interpretation is based on an equation system with the dimensionless conductivity as the only unknown parameter. A detailed prospection provides a consistent theoretical framework for the reliable quantification of the conductivity of GO with SECM. Finally, an analytical approximation of the conductivity as a function of the feedback current is proposed, making any further interpretation procedure straightforward, as it does not require iterative numerical simulations any more. The present work thus provides not only valuable information on the kinetics of GO reduction in mild conditions but also a general and simplified interpretation framework that can be extended to the quantitative conductivity mapping of other types of substrates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700