Thermal Stability of Gold Nanorods for High-Temperature Plasmonic Sensing
详细信息    查看全文
文摘
There are many potential sensing applications for Au nanorods due to a tunable localized surface plasmon resonance (LSPR) frequency that changes with aspect ratio. However, their application at high temperatures is limited due to a shape change that can take place well below the melting point of bulk Au, driven by a reduction in surface energy. A method of stabilizing Au nanorods is provided here by encapsulating them with a 15 nm capping layer of yttria stabilized zirconia (YSZ). After annealing rods with nominal dimensions of 100 脳 44 nm to a temperature of 600 掳C, small reductions in length were observed, but the rods remained stable for all subsequent sensing tests at 500 掳C, which amounted to 80 h. It was shown with a separate sample that the rod geometry can be preserved even up to 800 掳C over a 12 h annealing period, although a significant shortening of the rod length occurred, leaving a void space in the YSZ. The sensing response of both the transverse and the longitudinal LSPR peaks was monitored for H2, CO, and NO2 exposures in an air background at 500 掳C. In all cases, the longitudinal LSPR peak shows a larger shift upon gas exposure than does the transverse peak.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700