Bottom-Up Synthesis of Liquid-Phase-Processable Graphene Nanoribbons with Near-Infrared Absorption
详细信息    查看全文
文摘
Structurally defined, long (>100 nm), and low-band-gap (鈭?.2 eV) graphene nanoribbons (GNRs) were synthesized through a bottom-up approach, enabling GNRs with a broad absorption spanning into the near-infrared (NIR) region. The chemical identity of GNRs was validated by IR, Raman, solid-state NMR, and UV鈥搗is鈥揘IR absorption spectroscopy. Atomic force microscopy revealed well-ordered self-assembled monolayers of uniform GNRs on a graphite surface upon deposition from the liquid phase. The broad absorption of the low-band-gap GNRs enables their detailed characterization by Raman and time-resolved terahertz photoconductivity spectroscopy with excitation at multiple wavelengths, including the NIR region, which provides further insights into the fundamental physical properties of such graphene nanostructures.

Keywords:

graphene nanoribbon; cyclodehydrogenation; Diels鈭扐lder reaction; band-gap engineering; near-infrared absorption

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700