Validation of Density Functionals for Adsorption Energies on Transition Metal Surfaces
详细信息    查看全文
  • 作者:Kaining DuanmuDonald G. Truhlar
  • 刊名:Journal of Chemical Theory and Computation
  • 出版年:2017
  • 出版时间:February 14, 2017
  • 年:2017
  • 卷:13
  • 期:2
  • 页码:835-842
  • 全文大小:256K
  • ISSN:1549-9626
文摘
The quantitative prediction of adsorption energies of radicals and molecules on surfaces is essential for the design and understanding of heterogeneous catalytic processes. A recent paper by Wellendorff et al. collected an experimental database of 39 reaction energies involving adsorption energies on transition metal surfaces that can be used as benchmarks for testing quantum mechanical electronic structure methods, and we compared the experimental data to Kohn–Sham density functional calculations with six exchange–correlation functionals. In this paper, we rearranged the data into two categories: open-shell radical adsorption reactions and closed-shell molecular adsorption reactions. We recalculated the adsorption energies with PBE, and we also calculated them with three functionals, M06-L, GAM, and MN15-L, that were not studied in the Wellendorff et al. paper; then we compared our results to the benchmark data. Of the nine functionals that have been compared to the databases, we find that BEEF-vdW, GAM, and RPBE perform best for the open-shell radical adsorption reactions, and MN15-L performs best for the closed-shell molecular adsorption, followed by BEEF-vdW and M06-L.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700