Dopant-Driven Nanostructured Loose-Tube SnO2 Architectures: Alternative Electrocatalyst Supports for Proton Exchange Membrane Fuel Cells
详细信息    查看全文
文摘
A novel complex loose-tube (fiber-in-tube) morphology (Nb)鈥揝nO2 has been prepared by conventional, single-needle electrospinning, and a mechanism for the formation of fiber-in-tube structures is proposed. The presence of niobium drives the morphology of electrospun tin oxide from dense fibers to loose tubes by enhancing the Kirkendall effect where precursor salts diffuse to the fiber surface during calcination. The highest electronic conductivity (0.02 S cm鈥?) of the cassiterite structured niobium-doped tin oxides is observed with 5 wt % Nb doping. The loose-tube morphology materials have been further functionalized by depositing Pt nanoparticles prepared by a microwave assisted polyol method, and the samples examined by electron microscopy and studied for their electrochemical properties. The electrochemically active surface area of 13 wt % Pt on Nb鈥揝nO2 is >50 m2 g鈥?, and is more stable to voltage cycling than Pt/C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700