Empirical Bayesian Random Censoring Threshold Model Improves Detection of Differentially Abundant Proteins
详细信息    查看全文
文摘
A challenge in proteomics is that many observations are missing with the probability of missingness increasing as abundance decreases. Adjusting for this informative missingness is required to assess accurately which proteins are differentially abundant. We propose an empirical Bayesian random censoring threshold (EBRCT) model that takes the pattern of missingness in account in the identification of differential abundance. We compare our model with four alternatives, one that considers the missing values as missing completely at random (MCAR model), one with a fixed censoring threshold for each protein species (fixed censoring model) and two imputation models, k-nearest neighbors (IKNN) and singular value thresholding (SVTI). We demonstrate that the EBRCT model bests all alternative models when applied to the CPTAC study 6 benchmark data set. The model is applicable to any label-free peptide or protein quantification pipeline and is provided as an R script.

Keywords:

proteomics; mass spectrometry; label-free quantification; missing data

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700