Responses of Pseudomonas putida to Zinc Excess Determined at the Proteome Level: Pathways Dependent and Independent of ColRS
详细信息    查看全文
文摘
Zinc is an important micronutrient for bacteria, but its excess is toxic. Recently, the ColRS two-component system was shown to detect and respond to zinc excess and to contribute to zinc tolerance of Pseudomonas putida. Here, we applied a label-free whole-cell proteome analysis to compare the zinc-induced responses of P. putida and colR knockout. We identified dozens of proteins that responded to zinc in a ColR-independent manner, among others, known metal efflux systems CzcCBA1, CzcCBA2, CadA2 and CzcD. Nine proteins were affected in a ColR-dependent manner, and besides known ColR targets, four new candidates for ColR regulon were identified. Despite the relatively modest ColR-dependent changes of wild-type, colR deficiency resulted in drastic proteome alterations, with 122 proteins up- and 62 down-regulated by zinc. This zinc-promoted response had remarkable overlap with the alternative sigma factor AlgU-controlled regulon in P. aeruginosa. The most prominent hallmark was a high induction of alginate biosynthesis proteins and regulators. This response likely alleviates the zinc stress, as the AlgU-regulated alginate regulator AmrZ was shown to contribute to zinc tolerance of colR knockout. Thus, the ColRS system is important for zinc homeostasis, and in its absence, alternative stress response pathways are activated to support the zinc tolerance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700