Self-Organization of Plasmonic and Excitonic Nanoparticles into Resonant Chiral Supraparticle Assemblies
详细信息    查看全文
文摘
Chiral nanostructures exhibit strong coupling to the spin angular momentum of incident photons. The integration of metal nanostructures with semiconductor nanoparticles (NPs) to form hybrid plasmon鈥揺xciton nanoscale assemblies can potentially lead to plasmon-induced optical activity and unusual chiroptical properties of plasmon鈥揺xciton states. Here we investigate such effects in supraparticles (SPs) spontaneously formed from gold nanorods (NRs) and chiral CdTe NPs. The geometry of this new type of self-limited nanoscale superstructures depends on the molar ratio between NRs and NPs. NR dimers surrounded by CdTe NPs were obtained for the ratio NR/NP = 1:15, whereas increasing the NP content to a ratio of NR/NP = 1:180 leads to single NRs in a shell of NPs. The SPs based on NR dimers exhibit strong optical rotatory activity associated in large part with their twisted scissor-like geometry. The preference for a specific nanoscale enantiomer is attributed to the chiral interactions between CdTe NP in the shell. The SPs based on single NRs also yield surprising chiroptical activity at the frequency of the longitudinal mode of NRs. Numerical simulations reveal that the origin of this chiroptical band is the cross talk between the longitudinal and the transverse plasmon modes, which makes both of them coupled with the NP excitonic state. The chiral SP NR鈥揘P assemblies combine the optical properties of excitons and plasmons that are essential for chiral sensing, chiroptical memory, and chiral catalysis.

Keywords:

Chiral assemblies; supraparticles; nanoscale chirality; hybrid electronic states; polarization rotation; circular dichroism

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700