Understanding the Thermodynamics of Hydrogen Bonding in Alcohol-Containing Mixtures: Self Association
详细信息    查看全文
文摘
The perturbed chain form of the polar statistical associating fluid theory (Polar PC-SAFT) was used to model lower 1-alcohol + n-alkane mixtures. The ability of the equation of state to predict accurate activity coefficients at infinite dilution was demonstrated as a function of temperature. Investigations show that the association term in SAFT plays an important role in capturing the right composition dependence of the activity coefficients in comparison with nonassociating models (UNIQUAC). Results also show that considering long-range polar interactions can significantly improve the fractions of free monomers predicted by PC-SAFT in comparison with spectroscopic data and molecular dynamic (MD) simulations carried out in this work. Furthermore, evidence of hydrogen-bonding cooperativity in 1-alcohol + n-alkane systems is discussed using spectroscopy, simulation, and theory. In general, results demonstrate the theory鈥檚 predictive power, limitations of first-order perturbation theories, as well as the importance of considering long-range polar interactions for better hydrogen-bonding thermodynamics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700