Protocols for the Fabrication, Characterization, and Optimization of n-Type Thermoelectric Ceramic Oxides
详细信息    查看全文
文摘
The development of oxides with high figure of merit, ZT, at modest temperatures (∼300–500 °C) is desirable for ceramic-based thermoelectric generator technology. Although ZT is a compound metric with contributions from thermal conductivity (κ), Seebeck coefficient (S), and electrical conductivity (σ), it has been empirically demonstrated that the key to developing thermoelectric n-type oxides is to optimize σ of the ceramic to ∼1000 S/cm at the operating temperature. Titanate-based perovskites are a popular choice for the development of n-type oxide ceramics; however, the levels of σ required cannot be achieved without control of the ceramic quality, significant reduction of the ceramic in low P(O2) atmosphere (e.g., N2/5%H2), and the use of specific dopants and dopant mechanisms, which allow the egress of oxygen homogeneously from the lattice. Here, we discuss the processing protocols to fabricate reliable, reproducible ceramic oxides and schemes for inducing high levels of σ, thereby optimizing the power factor (PF = σS2) and ZT. The problems associated with measuring κ, σ, and S to achieve reproducible and accurate values of ZT are discussed, as are future directions which should enable further optimization. Finally, we comment on how these protocols may be applied to other systems and structures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700