Mechanism of Dehydration of Phenols on Noble Metals via First-Principles Microkinetic Modeling
详细信息    查看全文
文摘
Phenolic compounds constitute a sizable fraction of depolymerized biomass and are an ideal feedstock for the production of chemicals such as benzene and toluene. However, these compounds require catalytic upgrade via hydrodeoxygenation (HDO), a process whereby oxygen is removed as water by adding hydrogen while retaining the carbon molecular architecture. While the HDO of phenolics has been widely studied, a mechanism that is consistent with the data is still lacking. Herein, we perform first-principles microkinetic calculations for the HDO mechanism of an archetypical compound, p-cresol, on Pt(111). In contrast to the general belief, and in accordance with experimental data, we show that the single metal functionality is sufficient to carry out the HDO chemistry selectively, although ring activation is necessary. However, complete hydrogenation of the ring is neither necessary nor kinetically preferred. As a result, the conversion of p-cresol to toluene follows a complex energy landscape, where methylcyclohexanol and methylcyclohexane are not intermediates to toluene but rather share a common pool of intermediates with the hydrocarbons.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700