Immobilization of Cysteine-Tagged Proteins on Electrode Surfaces by Thiol–Ene Click Chemistry
详细信息    查看全文
文摘
Thiol–ene click chemistry can be exploited for the immobilization of cysteine-tagged dehydrogenases in an active form onto carbon electrodes (glassy carbon and carbon felt). The electrode surfaces have been first modified with vinylphenyl groups by electrochemical reduction of the corresponding diazonium salts generated in situ from 4-vinylaniline. The grafting process has been optimized in order to not hinder the electrochemical regeneration of NAD+/NADH cofactor and soluble mediators such as ferrocenedimethanol and [Cp*Rh(bpy)Cl]+. Having demonstrated the feasibility of thiol–ene click chemistry for attaching ferrocene moieties onto those carbon surfaces, the same approach was then applied to the immobilization of d-sorbitol dehydrogenases with cysteine tag. These proteins can be effectively immobilized (as pointed out by XPS), and the cysteine tag (either 1 or 2 cysteine moieties at the N terminus of the polypeptide chain) was proven to maintain the enzymatic activity of the dehydrogenase upon grafting. The bioelectrode was applied to electroenzymatic enantioselective reduction of d-fructose to d-sorbitol, as a case study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700