Role of Site Stability in Methane Activation on PdxCe1鈥搙O未 Surfaces
详细信息    查看全文
文摘
Doped metal oxide catalysts can be optimized by identifying dopant metal/host oxide combinations that exhibit synergistic interactions not present in the parent systems. This is exemplified by PdxCe1鈥?i>xO mixed oxides that yield methane oxidation rates unobtainable by the separate systems. Here we demonstrate that rapid C鈥揌 activation on PdxCe1鈥?i>xO catalysts can be attributed to emergent behavior of the doped oxide enabling Pd4+ 鈫?Pd2+ transitions not evident in catalysts featuring a PdOx active phase. PdxCe1鈥?i>xO surfaces activate methane through hydrogen abstraction over Pd4+ surface states, in contrast to the 蟽-complex activation route favored over PdOx surfaces. The stability of the active Pd4+ state is dependent on temperature and oxygen pressure during catalytic operation, and as such we combine reaction kinetics and thermodynamic stability arguments from density functional theory (DFT) calculations to derive the apparent methane activation barrier. This accounts for varying conditions affecting the stability of the Pd4+ state, demonstrating that active Pd4+ sites are metastable. These states form under the reaction environment and offer lower methane activation barriers in comparison to Pd2+ states. The Pd4+ state is stabilized by the incorporation of Pd in the fluorite lattice structure of CeO2, which in turn provides unique methane activation chemistry from the PdxCex鈥?O mixture. We generalize these results over (T,P) space by deriving phase boundaries demarcating regions where each Pd surface oxidation state is thermodynamically stable or kinetically active. The approach presented here can be readily extended to other systems, providing a method for assessing the interplay between site activity and stability on catalytic surfaces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700