Reaction Kinetics and Formation Mechanism of TiO2 Nanorods in Solution: An Insight into Oriented Attachment
详细信息    查看全文
文摘
The reaction kinetics and formation mechanism of oriented attachment for shaped nanoparticles in solution are not well-understood. We present the reaction kinetics and formation mechanism of organic-capped anatase TiO2 nanorods in solution as a case study for the oriented attachment process using small-angle X-ray scattering (SAXS) and transmission electronic microscopy. The SAXS analysis qualitatively and quantitatively provides in-depth understanding of the mechanism, including the structural evolution, interparticle interaction, and spatial orientation of nanoparticles developed from nanodots to nanorods during the nucleation, isotropic, and anisotropic growth steps. The present study demonstrates the growth details of oriented attachment of nanoparticles in solution. An ordered lamellar structure in the solution is constructed by the balance of interaction forces among surface ligands, functional groups, and solvent molecules serving as a natural template. The template allows the alignment of spherical nanoparticles into ordered chain arrays and facilitates simultaneous transformation from spherical to rod shape via proximity attachment. The proposed model reveals an insight into the oriented attachment mechanism. This multistep formation mechanism of TiO2 nanorods in solution can provide the fundamental understanding of how to tune the shape of nanoparticles and further control the aggregation of spatial nanorod networks in solution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700