A High-Pressure Study of the Effects of TiO2 Nanoparticles on the Structural Organization of Ionic Liquids
详细信息    查看全文
文摘
The local structures between nano-TiO2 and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI+TFS鈥?/sup>) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMI+TFS鈥?/sup>) were investigated using high-pressure infrared spectroscopy. No significant changes in C鈥揌 spectral features of EMI+TFS鈥?/sup> were observed in the presence of nano-TiO2 under ambient pressure. As the EMI+TFS鈥?/sup>/nano-TiO2 mixture was compressed to 0.3 GPa, the imidazolium C鈥揌 absorptions became two sharp bands at 3108 and 3168 cm鈥?, respectively, and the alkyl C鈥揌 stretching absorption exhibits a new band at 3010 cm鈥? associated with a weaker band at 3028 cm鈥?. It appears that pressure stabilizes the isolated conformations due to pressure-enhanced imidazolium C鈥揌---nano-TiO2 interactions. Our results also reveal that alkyl C鈥揌 groups play non-negligible roles at the conditions of high pressures. The results of BMI+TFS鈥?/sup>/nano-TiO2 are remarkably different from what is revealed for EMI+TFS鈥?/sup>/nano-TiO2. The spectral features and band frequencies of BMI+TFS鈥?/sup>/nano-TiO2 are almost identical to those of pure BMI+TFS鈥?/sup> under various pressures. This study demonstrates that changes to the alkyl chain length of the cation could be made to control the order and strength of ionic liquid/nano-TiO2 interactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700