Versatile Synthesis of Thiol- and Amine-Bifunctionalized Silica Nanoparticles Based on the Ouzo Effect
详细信息    查看全文
文摘
In this article, we report a novel, nanoprecipitation-based method for preparing silica nanoparticles with thiol and amine cofunctionalization. (3-Mercaptopropyl)trimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS) were used as the organosilane precursors, which were subjected to acid-catalyzed polycondensation in an organic phase containing a water-miscible solvent (e.g., dimethyl sulfoxide). A pale colloidal solution could be immediately formed when the preincubated organic phase was directly injected into water. The initial composition ratio between MPTMS and APTMS is an important factor governing the formation of nanoparticles. Specifically, large, unstable micrometer-sized particles were formed for preparation using MPTMS as the sole silane source. In contrast, when APTMS was used alone, no particles could be formed. By reducing the fraction of APTMS (or increasing that of MPTMS) in the initial mixture of organosilanes, the formation of nanometer-sized particles occurred at a critical fraction of APTMS (i.e., 25%). Remarkably, a tiny fraction (e.g., 1%) of APTMS was sufficient to produce stable nanoparticles with a hydrodynamic diameter of about 200 nm. Other factors that would also affect particle formation were determined. Moreover, an interesting temperature effect on particle formation was observed. The TEM micrographs show spherical nanospheres with mean sizes of 130鈥?50 nm in diameter. The solid-state <sup>29sup>Si NMR spectra demonstrate that the hybrid silica materials contain fully and partially condensed silicon structures. The bifunctionalized silica nanoparticles have positive zeta potentials whose magnitudes are positively correlated with the amount of APTMS. The total thiol content, however, is negatively correlated with the amount of APTMS. The cationic nanoparticles can bind an antisense oligonucleotide in a composition-dependent manner.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700