Biochemical Characterization of Eight Genetic Variants of Human DNA Polymerase 魏 Involved in Error-Free Bypass across Bulky N2-Guanyl DNA Adducts
详细信息    查看全文
文摘
DNA polymerase (pol) 魏, one of the Y-family polymerases, has been shown to function in error-free translesion DNA synthesis (TLS) opposite the bulky N2-guanyl DNA lesions induced by many carcinogens such as polycyclic aromatic hydrocarbons. We analyzed the biochemical properties of eight reported human pol 魏 variants positioned in the polymerase core domain, using the recombinant pol 魏 (residues 1鈥?26) protein and the DNA template containing an N2-CH2(9-anthracenyl)G (N2-AnthG). The truncation R219X was devoid of polymerase activity, and the E419G and Y432S variants showed much lower polymerase activity than wild-type pol 魏. In steady-state kinetic analyses, E419G and Y432S displayed 20- to 34-fold decreases in kcat/Km for dCTP insertion opposite G and N2-AnthG compared to that of wild-type pol 魏. The L21F, I39T, and D189G variants, as well as E419G and Y432S, displayed 6- to 22-fold decreases in kcat/Km for next-base extension from C paired with N2-AnthG, compared to that of wild-type pol 魏. The defective Y432S variant had 4- to 5-fold lower DNA-binding affinity than wild-type, while a slightly more efficient S423R variant possessed 2- to 3-fold higher DNA-binding affinity. These results suggest that R219X abolishes and the E419G, Y432S, L21F, I39T, and D189G variations substantially impair the TLS ability of pol 魏 opposite bulky N2-G lesions in the insertion step opposite the lesion and/or the subsequent extension step, raising the possibility that certain nonsynonymous pol 魏 genetic variations translate into individual differences in susceptibility to genotoxic carcinogens.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700