Molecular Dynamics Simulations of Uranyl and Uranyl Carbonate Adsorption at Aluminosilicate Surfaces
详细信息    查看全文
  • 作者:Sebastien Kerisit ; Chongxuan Liu
  • 刊名:Environmental Science & Technology
  • 出版年:2014
  • 出版时间:April 1, 2014
  • 年:2014
  • 卷:48
  • 期:7
  • 页码:3899-3907
  • 全文大小:561K
  • 年卷期:v.48,no.7(April 1, 2014)
  • ISSN:1520-5851
文摘
Adsorption at mineral surfaces is a critical factor controlling the mobility of uranium(VI) in aqueous environments. Therefore, molecular dynamics (MD) simulations were performed to investigate uranyl(VI) adsorption onto two neutral aluminosilicate surfaces, namely, the orthoclase (001) surface and the octahedral aluminum sheet of the kaolinite (001) surface. Although uranyl preferentially adsorbs as a bidentate inner-sphere complex on both surfaces, the free energy of adsorption on the orthoclase surface (鈭?5 kcal mol鈥?) is significantly more favorable than that at the kaolinite surface (鈭? kcal mol鈥?), which is attributed to differences in surface functional groups and the ability of the orthoclase surface to release a surface potassium ion upon uranyl adsorption. The structures of the adsorbed complexes compare favorably with X-ray absorption spectroscopy results. Simulations of the adsorption of uranyl complexes with up to three carbonate ligands revealed that uranyl complexes coordinated to up to two carbonate ions are stable on the orthoclase surface whereas uranyl carbonate surface complexes are unfavored at the kaolinite surface. Combining the MD-derived equilibrium adsorption constants for orthoclase with aqueous equilibrium constants for uranyl carbonate species indicates the presence of adsorbed uranium complexes with one or two carbonates under alkaline conditions, in support of current uranium(VI) surface complexation models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700