Theoretical and Experimental Studies of CO2 and H2 Separation Using the 1-Ethyl-3-methylimidazolium Acetate ([emim][CH3COO]) Ionic Liquid
详细信息    查看全文
文摘
The performance of [emim][CH3COO] ionic liquid (IL) to separate mixtures of CO2 and H2 is studied using both classical and ab initio simulation methods and experiments. Simulations show that H2 solubility and permeability in [emim][CH3COO] are quite low with Henry鈥檚 law constants about 1 脳 104 bar and permeabilities in the range 29鈥?9 barrer at 313鈥?73 K. In the case of CO2 absorption in [emim][CH3COO], ab initio molecular dynamics simulations predict two types of CO2 absorption states. In type I state, CO2 molecules interact with the [CH3COO]鈭?/sup> anion through strong complexation leading to high CO2 solubility. The C atom of CO2 is located close to the O atoms of the [CH3COO]鈭?/sup> anion with an average distance of about 1.61 脜. The CO2 bond angle (胃(OCO)) is about 138掳, significantly perturbed from that of an isolated linear CO2. In type II state, the CO2 molecule maintains a linear configuration and is located at larger separations (>2.2 脜) from the [CH3COO]鈭?/sup> anion. The weaker interaction of CO2 with the [CH3COO]鈭?/sup> anion in type II state is similar to the one observed when CO2 absorbs in [bmim][PF6]. Simulations further demonstrate that the [emim]+ cation competes with CO2 to interact with the [CH3COO]鈭?/sup> anion. The predicted high CO2 permeability and low H2 permeability in [emim][CH3COO] are also verified by our experiments. The experimental CO2 permeability in [emim][CH3COO] is in the range of 1325鈥?701 barrer, and high experimental CO2/H2 permeability selectivities of 21鈥?7 at 313鈥?73 K are observed. We propose that by replacing [emim]+ cation with 1-butyl-1-methylpyrrolidinium ([PY14]+) further enhancement of CO2 solubility in [PY14][CH3COO] IL will be obtained as well as good performance to separate CO2 and H2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700