Mechanism of the Electrocatalytic Reduction of Protons with Diaryldithiolene Cobalt Complexes
详细信息    查看全文
文摘
A series of dimeric cobalt-diaryldithiolene complexes [Co(S2C2Ar2)2]2, possessing various aryl para substituents (OMe, F, Cl, and Br), were studied as electrocatalysts for proton reduction in nonaqueous media, in an effort to correlate dithiolene donor strength with catalyst activity. Cyclic voltammetry data acquired for the cobalt-diaryldithiolene dimers guided the isolation of chemically reduced monoanionic ([Co(S2C2Ar2)2]鈭?/sup>) and dianionic ([Co(S2C2Ar2)2]2鈥?/sup>) monomers. The potassium and tetrabutylammonium salts of dianionic cobalt-diaryldithiolene complexes have been characterized by single crystal X-ray crystallography. Treatment of the dianionic species with stoichiometric quantities of a weak acid afforded H2 and the monoanionic cobalt-diaryldithiolene species. Density functional theory (BP86) suggests that hydrogen elimination proceeds through a diprotonated intermediate with a Co鈥揌 bond and a protonated S center. A transition state for transfer of the S鈥揌 proton to the metal center was located with a computed free energy of 5.9 kcal/mol, in solution (DMF via C-PCM approach).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700