Molecular Origins of Defects in Organohalide Perovskites and Their Influence on Charge Carrier Dynamics
详细信息    查看全文
文摘
The chemical origins of charge recombination centers in lead-based organohalide perovskites were investigated using a combination of quantitative solution chemistry, X-ray diffraction, and time-resolved photoluminescence spectroscopy. We explored the complex, concentration-dependent solution equilibria among iodoplumbate coordination complexes that have been implicated as potential midgap states in organohalide perovskites. High concentrations of PbI2, PbI3, and PbI42– were found in precursor solutions that match those used to deposit perovskite films for solar cell applications. We found that the concentration of tetraiodoplumbate PbI42– is uniquely correlated with the density of charge recombination centers found in the final perovskite films regardless of the lead precursor used to cast the films. However, mixed-halide perovskites commonly referred to as CH3NH3PbI3–xClx suppressed the formation of PbI42– in comparison to perovskites that included only iodide, which is consistent with the longer charge carrier lifetimes reported in mixed-halide perovskites. These findings bring a molecular-level view to the chemical origins of charge recombination centers that provides a fundamental basis from which to understand the reported improvement in uniformity of perovskite films and devices deposited using sequential methods. These findings also suggest new approaches to control the formation of defect precursors during the deposition of organohalide perovskite absorbers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700