Shape-Controlled Synthesis of Pt Nanocrystals: The Role of Metal Carbonyls
详细信息    查看全文
文摘
Well-controlled synthesis of nanocrystals is necessary to unambiguously correlate the structural properties of nanocrystals with the catalytic properties. The most common low-index surfaces are (111) and (100). Therefore, model materials with {111} and {100} facets are highly desirable, in order to understand the catalytic properties of (111) and (100) surfaces for various structure-sensitive reactions. We report a solution-phase synthesis using metal carbonyls as additives. This synthetic method produces highly monodisperse Pt octahedra and icosahedra as the model of Pt{111}, Pt cubes as the model of Pt{100}, respectively. Several other morphologies, such as truncated cubes, cuboctahedra, spheres, tetrapods, star-shaped octapods, multipods, and hyper-branched structure, are produced, as well. A bifunctional role of metal carbonyl in the synthesis is identified: zerovalent transition metal decomposed from metal carbonyl acts as a shape-directing agent, while CO provides the reducing power. These high-quality shape-controlled Pt nanocrystals are suitable for model catalyst studies.

Keywords:

platinum; nanocrystal; shape control; morphology; catalysis; electrocatalysis; CO oxidation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700