Nickel Catalysts for the Dehydrative Decarbonylation of Carboxylic Acids to Alkenes
详细信息    查看全文
文摘
Combining high-throughput experimentation with conventional experiments expedited discovery of new first-row nickel catalysts for the dehydrative decarbonylation of the bioderived substrates hydrocinnamic acid and fatty acids to their corresponding alkenes. Conventional experiments using a continuous distillation process (180 °C) revealed that catalysts composed of NiII or Ni0 precursors (NiIb>2b>, Ni(PPhb>3b>)b>4b>) and simple aryl phosphine ligands were the most active. In the reactions with fatty acids, the nature of the added phosphine influenced the selectivity for α-alkene, which reached a maximum value of 94%. Mechanistic studies of the hydrocinnamic reaction using Ni(PPhb>3b>)b>4b> as catalyst implicate a facile first turnover to produce styrene at room temperature, but deactivation of the Ni(0) catalyst by CO poisoning occurs subsequently, as evidenced by the formation of Ni(CO)(PPhb>3b>)b>3b>, which was isolated and structurally characterized. Styrene dimerization is a major side reaction. Analysis of the reaction mechanism using density functional theory supported catalyst regeneration along with alkene formation as the most energetically demanding reaction steps.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700