Mechanism of Rhodium-Catalyzed Formyl Activation: A Computational Study
详细信息    查看全文
文摘
Metal-catalyzed transfer hydroformylation is an important way of cleaving C–C bonds and constructing new double bonds. The newly reported density functional theory (DFT) method, M11-L, has been used to clarify the mechanism of the rhodium-catalyzed transfer hydroformylation reported by Dong et al. DFT calculations depict a deformylation and formylation reaction pathway. The deformylation step involves an oxidative addition to the formyl C–H bond, deprotonation with a counterion, decarbonylation, and β-hydride elimination. After olefin exchange, the formylation step takes place via olefin insertion into the Rh–H bond, carbonyl insertion, and a final protonation with the conjugate acid of the counterion. Theoretical calculations indicate that the alkalinity of the counterion is important for this reaction because both deprotonation and protonation occur during the catalytic cycle. A theoretical study into the formyl acceptor shows that the driving force of the reaction is correlated with the stability of the unsaturated bond in the acceptor. Our computational results suggest that alkynes or ring-strained olefins could be used as formyl acceptors in this reaction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700