Synthesis of Eight-Arm, Branched Oligonucleotide Hybrids and Studies on the Limits of DNA-Driven Assembly
详细信息    查看全文
文摘
Oligonucleotide hybrids with organic cores as rigid branching elements and four or six CG dimer strands have been shown to form porous materials from dilute aqueous solution. In order to explore the limits of this form of DNA-driven assembly, we prepared hybrids with three or eight DNA arms via solution-phase syntheses, using H-phosphonates of protected dinucleoside phosphates. This included the synthesis of (CG)8TREA, where TREA stands for the tetrakis[4-(resorcin-5-ylethynyl)phenyl]adamantane core. The ability of the new compounds to assemble in a DNA-driven fashion was studied by UV-melting analysis and NMR, using hybrids with self-complementary CG zipper arms or non-self-complementary TC dimer arms. The three-arm hybrid failed to form a material under conditions where four-arm hybrids did so. Further, the assembly of TREA hybrids appears to be dominated by hydrophobic interactions, not base pairing of the DNA arms. These results help in the design of materials forming by multivalent DNA鈥揇NA interactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700