HTMD: High-Throughput Molecular Dynamics for Molecular Discovery
详细信息    查看全文
  • 作者:S. Doerr ; M. J. Harvey ; Frank Noé ; G. De Fabritiis
  • 刊名:Journal of Chemical Theory and Computation
  • 出版年:2016
  • 出版时间:April 12, 2016
  • 年:2016
  • 卷:12
  • 期:4
  • 页码:1845-1852
  • 全文大小:514K
  • 年卷期:0
  • ISSN:1549-9626
文摘
Recent advances in molecular simulations have allowed scientists to investigate slower biological processes than ever before. Together with these advances came an explosion of data that has transformed a traditionally computing-bound into a data-bound problem. Here, we present HTMD, a programmable, extensible platform written in Python that aims to solve the data generation and analysis problem as well as increase reproducibility by providing a complete workspace for simulation-based discovery. So far, HTMD includes system building for CHARMM and AMBER force fields, projection methods, clustering, molecular simulation production, adaptive sampling, an Amazon cloud interface, Markov state models, and visualization. As a result, a single, short HTMD script can lead from a PDB structure to useful quantities such as relaxation time scales, equilibrium populations, metastable conformations, and kinetic rates. In this paper, we focus on the adaptive sampling and Markov state modeling features.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700