Optical Investigation of Broadband White-Light Emission in Self-Assembled Organic鈥揑norganic Perovskite (C6H11NH3)2PbBr4
详细信息    查看全文
文摘
The performance of hybrid organic perovskite (HOP) for solar energy conversion is driving a renewed interest in their light emitting properties. The recent observation of broad visible emission in layered HOP highlights their potential as white-light emitters. Improvement of the efficiency of the material requires a better understanding of its photophysical properties. We present in-depth experimental investigations of white-light (WL) emission in thin films of the (C6H11NH3)2PbBr4. The broadband, strongly Stokes shifted emission presents a maximum at 90 K when excited at 3.815 eV, and below this temperature coexists with an excitonic edge emission. X-rays and calorimetry measurements exclude the existence of a phase transition as an origin of the thermal behavior of the WL luminescence. The free excitonic emission quenches at low temperature, despite a binding energy estimated to 280 meV. Time-resolved photoluminescence spectroscopy reveals the multicomponent nature of the broad emission. We analyzed the dependence of these components as a function of temperature and excitation energy. The results are consistent with the existence of self-trapped states. The quenching of the free exciton and the thermal evolution of the WL luminescence decay time are explained by the existence of an energy barrier against self-trapping, estimated to 鈭?0 meV.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700