Slow-Injection Growth of Seeded CdSe/CdS Nanorods with Unity Fluorescence Quantum Yield and Complete Shell to Core Energy Transfer
详细信息    查看全文
文摘
A two-step process has been developed for growing the shell of CdSe/CdS core/shell nanorods. The method combines an established fast-injection-based step to create the initial elongated shell with a second slow-injection growth that allows for a systematic variation of the shell thickness while maintaining a high degree of monodispersity at the batch level and enhancing the uniformity at the single-nanorod level. The second growth step resulted in nanorods exhibiting a fluorescence quantum yield up to 100% as well as effectively complete energy transfer from the shell to the core. This improvement suggests that the second step is associated with a strong suppression of the nonradiative channels operating both before and after the thermalization of the exciton. This hypothesis is supported by the suppression of a defect band, ubiquitous to CdSe-based nanocrystals after the second growth.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700