Negative Colossal Magnetoresistance Driven by Carrier Type in the Ferromagnetic Mott Insulator GaV4S8
详细信息    查看全文
文摘
We report here a study on the evolution of structural and electronic properties of the lacunar spinel compounds GaV4S8 with charge doping. In this ferromagnetic (FM) Mott insulator, the heterovalent substitutions of Ga3+ by Zn2+ or Ge4+ allow induction of charge doping either by holes or by electrons. We show that electron-doped GaV4S8 displays a bulk, negative, and colossal magnetoresistance (CMR) with a relative drop of resistivity reaching 鈭?0% at 7 T in the vicinity of the Curie temperature. Conversely, hole-doped GaV4S8 does not display any negative CMR but a classical positive magnetoresistance. This asymmetric electron鈥揾ole doping effect challenges the common view stating that CMR effects in doped FM Mott insulators depends only on the density of carrier and not on their electron/hole nature. We show that a simple model based on multiorbital effects and Hund鈥檚 rule is able to capture the presence (absence) of negative CMR in electron- (hole-) doped GaV4S8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700