Edge-Functionalized Graphene Nanoribbon Frameworks for the Capture and Separation of Greenhouse Gases
详细信息    查看全文
文摘
We demonstrate a bottom-up synthetic approach for the synthesis of graphene nanoribbon frameworks (GNFs) incorporating edge-functionalized graphene nanoribbons via the Diels–Alder cycloaddition polymerization and a subsequent FeCl3-catalyzed cyclo-dehydrogenation reactions. This approach not only allowed us to precisely position substituents, namely, −OMe (GNF-0), −H (GNF-1), −CF3 (GNF-2), and −F (GNF-3), but also enabled to tune textural properties and gas affinity of resulting frameworks. GNFs exhibited promising physical properties such as high surface areas (up to 755 m2 g–1) and excellent physicochemical and thermal stabilities (up to 400 °C). Narrow pore size distribution and the presence of large aromatic units led to high affinity toward gases such as CO2 (27.4–30.9 kJ mol–1 at 1 bar), CH4 (21.3–26.0 kJ mol–1 at 1 bar), and H2 (6.5–8.2 kJ mol–1 at 1 bar). Notably, GNFs also showed promising CO2/CH4 breakthrough separation performance for natural gas sweetening and landfill gas separations at 298 K. The edge-functionalization of GNFs with −CF3 and −F significantly improved their affinity toward perfluorocarbons and CFCs, which are classified as potent greenhouse gases. Compared to GNF-3, GNF-2 containing −CF3 moieties showed much higher uptake capacity toward CFC-113 (67 wt % at 298 K).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700