Amphiphilic Poly(3-hexylthiophene)-Based Semiconducting Copolymers for Printing of Polyelectrolyte-Gated Organic Field-Effect Transistors
详细信息    查看全文
文摘
Polyelectrolytes are promising electronically insulating layers for low-voltage organic field effect transistors. However, the polyelectrolyte鈥搒emiconductor interface is difficult to manufacture due to challenges in wettability. We introduce an amphiphilic semiconducting copolymer which, when spread as a thin film, can change its surface from hydrophobic to hydrophilic upon exposure to water. This peculiar wettability is exploited in the fabrication of polyelectrolyte-gated field-effect transistors operating below 0.5 V. The prepared amphiphilic semiconducting copolymer is based on a hydrophobic regioregular poly(3-hexylthiophene) (P3HT) covalently linked to a hydrophilic poly(sulfonated)-based random block. Such a copolymer is obtained in a three-step strategy combining Grignard metathesis (GRIM), atom transfer radical polymerization (ATRP) processes, and a postmodification method. The structure of the diblock copolymer was characterized using FT-IR, 1H NMR spectroscopy, and gel permeation chromatography (GPC).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700