In Situ Measurement of Energy Level Shifts and Recombination Rates in Subphthalocyanine/C60 Bilayer Solar Cells
详细信息    查看全文
文摘
Understanding the nature and impact of internal interfaces is critical to understanding the operation of nanostructured organic devices, such as organic photovoltaics. Here, we use transient optoelectronic analyses to quantify in situ the HOMO level shifts and changes in interfacial recombination rate that occur within thermally evaporated subphthalocyanine (SubPc)/C60 bilayer solar cells as the SubPc evaporation source is varied. We show how such measurements can complement ex situ optical and physical techniques to access the functional impact of device modification, particularly with respect to the resulting device open-circuit voltage (VOC). We are able to explain how subtle changes in SubPc deposition conditions lead to significant modification of interfacial energetics and recombination dynamics, which in turn cause substantial changes in VOC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700