Electrodynamic and Excitonic Intertube Interactions in Semiconducting Carbon Nanotube Aggregates
详细信息    查看全文
文摘
The optical properties of selectively aggregated, nearly single chirality single-wall carbon nanotubes were investigated by both continuous-wave and time-resolved spectroscopies. With reduced sample heterogeneities, we have resolved aggregation-dependent reductions of the excitation energy of the S1 exciton and enhanced electron−hole pair absorption. Photoluminescence spectra revealed a spectral splitting of S1 and simultaneous reductions of the emission efficiencies and nonradiative decay rates. The observed strong deviations from isolated tube behavior are accounted for by enhanced screening of the intratube Coulomb interactions, intertube exciton tunneling, and diffusion-driven exciton quenching. We also provide evidence that density gradient ultracentrifugation can be used to structurally sort single-wall carbon nanotubes by aggregate size as evident by a monotonic dependence of the aforementioned optical properties on buoyant density.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700