Flexible Free-Standing III-Nitride Thin Films for Emitters and Displays
详细信息    查看全文
  • 作者:Y. F. Cheung ; K. H. Li ; H. W. Choi
  • 刊名:ACS Applied Materials & Interfaces
  • 出版年:2016
  • 出版时间:August 24, 2016
  • 年:2016
  • 卷:8
  • 期:33
  • 页码:21440-21445
  • 全文大小:470K
  • 年卷期:0
  • ISSN:1944-8252
文摘
The majority of a GaN light-emitting diode (LED) is released from its sapphire substrate through selective-area laser lift-off to form a freely suspended light emitter. By virtue of being suspended in air without supporting substrates, the ultrathin crystalline and crack-free film possesses flexibility and bendability. The free-standing LEDs benefit from significant relaxation of strain, evident from red-shifting of the E2(high) phonon frequencies as measured by Raman spectroscopy toward those of strain-free free-standing GaN substrates. The phonon frequencies remain invariant upon bending of the film; this indicates that the properties of the flexible device will not be dependent on the bending curvatures. The observation of pronounced spectral blue-shifts from the photoluminescence (PL) spectrum from the flexible regions further confirms the occurrence of strain relaxation in the quantum wells. Being free-standing and thus lacking a direct heat-sinking pathway, emissions from the different regions of the suspended film can be affected by thermal effects to different extents, which are investigated by long-wave infrared thermometry. Heat accumulation is determined to be most severe at the far end of the flexible stripe at higher currents, leading to reduced efficiencies and electroluminescence (EL) spectral red-shifts. Based on this architecture, a monolithic 3 × 4 dot-matrix microdisplay prototype is demonstrated, comprising three adjacent flexible stripe emitters with four individually addressable pixels on each stripe. This proof-of-concept demonstration opens up new opportunities for GaN optoelectronics for a wide range of flexible display and visual applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700