In Situ Observation of Reversible Nanomagnetic Switching Induced by Electric Fields
详细信息    查看全文
文摘
We report direct observation of controlled and reversible switching of magnetic domains using static (dc) electric fields applied in situ during Lorentz microscopy. The switching is realized through electromechanical coupling in thin film Fe0.7Ga0.3/BaTiO3 bilayer structures mechanically released from the growth substrate. The domain wall motion is observed dynamically, allowing the direct association of local magnetic ordering throughout a range of applied electric fields. During application of 7−11 MV/m electric fields to the piezoelectric BaTiO3 film, local magnetic domains rearrange in the ferromagnetic Fe0.7Ga0.3 layer due to the transfer of strain from the BaTiO3 film. A simulation based on micromagnetic modeling shows a magnetostrictive anisotropy of 25 kPa induced in the Fe0.7Ga0.3 due to the strain. This electric-field-dependent uniaxial anisotropy is proposed as a possible mechanism to control the coercive field during operation of an integrated magnetoelectric memory node.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700