Distinct Photocurrent Response of Individual GaAs Nanowires Induced by n-Type Doping
详细信息    查看全文
文摘
The doping-dependent photoconductive properties of individual GaAs nanowires have been studied by conductive atomic force microscopy. Linear responsivity against the bias voltage is observed for moderate n-doped GaAs wires with a Schottky contact under illumination, while that of the undoped ones exhibits a saturated response. The carrier lifetime of a single nanowire can be obtained by simulating the characteristic photoelectric behavior. Consistent with the photoluminescence results, the significant drop of minority hole lifetime, from several hundred to subpicoseconds induced by n-type doping, leads to the distinct photoconductive features. Moreover, by comparing with the photoelectric behavior of AlGaAs shelled nanowires, the equivalent recombination rate of carriers at the surface is assessed to be >1 脳 1012 s鈥? for 2 脳 1017cm鈥? n-doped bare nanowires, nearly 30 times higher than that of the doping-related bulk effects. This work suggests that intentional doping in nanowires could change the charge status of the surface states and impose significant impact on the electrical and photoelectrical performances of semiconductor nanostructures.

Keywords:

GaAs nanowire; photoconductive property; intentional doping; minority carrier lifetime; surface states; photoelectric device

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700