“Bio-switch Chip” Based on Nanostructured Conducting Polymer and Entrapped Enzyme
详细信息    查看全文
  • 作者:Daesan Kim ; Haneul Yoo ; Jae Yeol Park ; Seunghun Hong
  • 刊名:ACS Applied Materials & Interfaces
  • 出版年:2016
  • 出版时间:August 31, 2016
  • 年:2016
  • 卷:8
  • 期:34
  • 页码:21933-21938
  • 全文大小:298K
  • 年卷期:0
  • ISSN:1944-8252
文摘
We report a switchable biochip strategy where enzymes were entrapped in conducting polymer layers and the enzymatic reaction of the entrapped enzymes was controlled in real-time via electrical stimuli on the polymer layers. This device is named here as a “bio-switch chip” (BSC). We fabricated BSC structures using polypyrrole (Ppy) with entrapped glucose oxidase (GOx) and demonstrated the switching of glucose oxidation reaction in real-time. We found that the introduction of a negative bias voltage on the BSC structure resulted in the enhanced glucose oxidation reaction by more than 20 times than that without a bias voltage. Moreover, because the BSC structures could be fabricated on specific regions, we could control the enzymatic reaction on specific regions. In view of the fact that enzymes enable very useful and versatile biochemical reactions, the ability to control the enzymatic reactions via conventional electrical signals could open up various applications in the area of biochips and other biochemical industries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700