Accurate Location and Manipulation of Nanoscaled Objects Buried under Spin-Coated Films
详细信息    查看全文
文摘
Detection and precise localization of nanoscale structures buried beneath spin-coated films are highly valuable additions to nanofabrication technology. In principle, the topography of the final film contains information about the location of the buried features. However, it is generally believed that the relation is masked by flow effects, which lead to an upstream shift of the dry film鈥檚 topography and render precise localization impossible. Here we demonstrate, theoretically and experimentally, that the flow-shift paradigm does not apply at the submicrometer scale. Specifically, we show that the resist topography is accurately obtained from a convolution operation with a symmetric Gaussian kernel whose parameters solely depend on the resist characteristics. We exploit this finding for a 3 nm precise overlay fabrication of metal contacts to an InAs nanowire with a diameter of 27 nm using thermal scanning probe lithography.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700