Improving the Selectivity of Engineered Protease Inhibitors: Optimizing the P2 Prime Residue Using a Versatile Cyclic Peptide Library
详细信息    查看全文
文摘
Standard mechanism inhibitors are attractive design templates for engineering reversible serine protease inhibitors. When optimizing interactions between the inhibitor and target protease, many studies focus on the nonprimed segment of the inhibitor鈥檚 binding loop (encompassing the contact 尾-strand). However, there are currently few methods for screening residues on the primed segment. Here, we designed a synthetic inhibitor library (based on sunflower trypsin inhibitor-1) for characterizing the P2鈥?specificity of various serine proteases. Screening the library against 13 different proteases revealed unique P2鈥?preferences for trypsin, chymotrypsin, matriptase, plasmin, thrombin, four kallikrein-related peptidases, and several clotting factors. Using this information to modify existing engineered inhibitors yielded new variants that showed considerably improved selectivity, reaching up to 7000-fold selectivity over certain off-target proteases. Our study demonstrates the importance of the P2鈥?residue in standard mechanism inhibition and unveils a new approach for screening P2鈥?substitutions that will benefit future inhibitor engineering studies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700