Potent Fibrinolysis Inhibitor Discovered by Shape and Electrostatic Complementarity to the Drug Tranexamic Acid
详细信息    查看全文
文摘
Protein鈥損rotein interfaces provide an important class of drug targets currently receiving increased attention. The typical design strategy to inhibit protein鈥損rotein interactions usually involves large molecules such as peptides and macrocycles. One exception is tranexamic acid (TXA), which, as a lysine mimetic, inhibits binding of plasminogen to fibrin. However, the daily dose of TXA is high due to its modest potency and pharmacokinetic properties. In this study, we report a computational approach, where the focus was on finding electrostatic potential similarities to TXA. Coupling this computational technique with a high-quality low-throughput screen identified 5-(4-piperidyl)-3-isoxazolol (4-PIOL) as a potent plasminogen binding inhibitor with the potential for the treatment of various bleeding disorders. Remarkably, 4-PIOL was found to be more than four times as potent as the drug TXA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700