Ultra-Durable and Transparent Self-Cleaning Surfaces by Large-Scale Self-Assembly of Hierarchical Interpenetrated Polymer Networks
详细信息    查看全文
文摘
In nature, durable self-cleaning surfaces such as the Lotus leaf rely on the multiscale architecture and cohesive regenerative properties of organic tissue. Real-world impact of synthetic replicas has been limited by the poor mechanical and chemical stability of the ultrafine hierarchical textures required for attaining a highly dewetting superhydrophobic state. Here, we present the low-cost synthesis of large-scale ultradurable superhydrophobic coatings by rapid template-free micronano texturing of interpenetrated polymer networks (IPNs). A highly transparent texture of soft yielding marshmallow-like pillars with an ultralow surface energy is obtained by sequential spraying of a novel polyurethane-acrylic colloidal suspension and a superhydrophobic nanoparticle solution. The resulting coatings demonstrate outstanding antiabrasion resistance, maintaining superhydrophobic water contact angles and a pristine lotus effect with sliding angles of below 10° for up to 120 continuous abrasion cycles. Furthermore, they also have excellent chemical- and photostability, preserving the initial performance upon more than 50 h exposure to intense UVC light (254 nm, 3.3 mW cm–2), 24 h of oil contamination, and highly acidic conditions (1 M HCl). This sprayable polyurethane-acrylic colloidal suspension and surface texture provide a rapid and low-cost approach for the substrate-independent fabrication of ultradurable transparent self-cleaning surfaces with superior abrasion, chemical, and UV-resistance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700