Control of the Redox Activity of PbS Quantum Dots by Tuning Electrostatic Interactions at the Quantum Dot/Solvent Interface
详细信息    查看全文
文摘
This paper describes the control of electron exchange between a colloidal PbS quantum dot (QD) and a negatively charged small molecule (9,10-anthraquinone-2-sulfonic acid sodium salt, AQ), through tuning of the charge density in the ligand shell of the QD, within an aqueous dispersion. The probability of electron exchange, measured through steady-state and time-resolved optical spectroscopy, is directly related to the permeability of the protective ligand shell, which is a mixed monolayer of negatively charged 6-mercaptohexanoate (MHA) and neutral 6-mercaptohexanol (MHO), to AQ. The composition of the ligand shell is quantitatively characterized by 1H NMR. The dependence of the change in Gibbs free energy, ΔGb>obsb>, for the diffusion of AQ through the charged ligand shell and its subsequent adsorption to the QD surface is well-described with an electrostatic double-layer model for the QD/solvent interface. Fits of the optical data to this model yield an increase in the free energy for transfer of AQ from bulk solution to the surface of the QD (where it exchanges electrons with the QD) of 154 J/mol upon introduction of each additional charged MHA ligand to the ligand shell. This work expands the set of chemical parameters useful for controlling the redox activity of QDs via surface modification and suggests strategies for the use of nanoparticles for molecular and biomolecular recognition within chemically complex environments and for design of chemically stable nanoparticles for aqueous photocatalytic systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700