Extreme and Quantized Magneto-optics with Graphene Meta-atoms and Metasurfaces
详细信息    查看全文
文摘
Graphene鈥攁 naturally occurring two-dimensional material with unique optical and electronic properties鈥攕erves as a platform for novel terahertz applications and miniaturized systems with new capabilities. Recent discoveries of unusual quantum magneto-transport and high magneto-optical activity in strong magnetic fields make graphene a potential candidate for nonreciprocal photonics. Here we propose a paradigm of a flatland graphene-based metasurface in which an extraordinary and quantized magneto-optical activity at terahertz and infrared is attained at low, on-chip-compatible, magnetizations (鈭?.2鈥?.3 T). The proposed system essentially breaks the tight linkage between the strength of the magnetic biasing and the resulting magneto-optical response. We design a system extremely sensitive to the quantized spectrum of graphene Landau levels and predict up to 90掳 of Faraday rotation with just a single sheet of graphene. We also demonstrate how to resolve the quantum resonances at the macroscopic level in the far-field. Our results not only are of a fundamental interest, but, as we discuss, pave a way to conceptually new capabilities in a range of applications, including sensing, terahertz nanophotonics, and even cryptography.

Keywords:

nonreciprocity; graphene; Faraday effect; quasistatic resonators; optical nanodevices

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700