Kinetic Model for the Activation of Mammalian Olfactory Receptor
详细信息    查看全文
  • 作者:Seogjoo JangChangbong Hyeon
  • 刊名:Journal of Physical Chemistry B
  • 出版年:2017
  • 出版时间:February 16, 2017
  • 年:2017
  • 卷:121
  • 期:6
  • 页码:1304-1311
  • 全文大小:451K
  • ISSN:1520-5207
文摘
The sense of smell is triggered by binding of odorants to a set of olfactory receptors (ORs), the activation of which generates specific patterns of neuronal signals in olfactory bulbs. Despite a long history of research and speculations, very little is known about the actual mechanism of OR activation. In particular, there is virtually no theoretical framework capable of describing the kinetics of olfactory activation at a quantitative level. Based on the fact that mammalian ORs belong to a class of G-protein coupled receptors (GPCRs) and utilizing the information available from recent studies on other types of GPCRs with known structural data, we construct a minimal kinetic model for mammalian olfactory activation, obtaining a new expression for the signal strength as a function of odorant and G-protein concentrations and defining this as odor activity (OA). The parametric dependence of OA on equilibrium dissociation and rate constants provides a new comprehensive means to describe how odorant-OR binding kinetics affects the odor signal, and offers new quantitative criteria for classifying agonistic, partially agonistic, and antagonistic (or inverse agonistic) behavior. The dependence of OA on the concentration of G-proteins also suggests a new experimental method to determine key equilibrium constants for odorant-OR and G-protein-OR association/dissociation processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700