Efficient and Accurate Methods for the Geometry Optimization of Water Clusters: Application of Analytic Gradients for the Two-Body:Many-Body QM:QM Fragmentation Method to (H2O)n
详细信息    查看全文
  • 作者:Desiree M. Bates ; Joshua R. Smith ; Gregory S. Tschumper
  • 刊名:Journal of Chemical Theory and Computation
  • 出版年:2011
  • 出版时间:September 13, 2011
  • 年:2011
  • 卷:7
  • 期:9
  • 页码:2753-2760
  • 全文大小:773K
  • 年卷期:v.7,no.9(September 13, 2011)
  • ISSN:1549-9626
文摘
The structures of more than 70 low-lying water clusters ranging in size from (H2O)3 to (H2O)10 have been fully optimized with several different quantum mechanical electronic structure methods, including second-order M酶ller鈥揚lesset perturbation theory (MP2) in conjunction with correlation consistent triple-味 basis sets (aug-cc-pVTZ for O and cc-pVTZ for H, abbreviated haTZ). Optimized structures obtained with less demanding computational procedures were compared to the MP2/haTZ ones using both MP2/haTZ single point energies and the root-mean-square (RMS) deviations of unweighted Cartesian coordinates. Based on these criteria, B3LYP/6-31+G(d,2p) substantially outperforms both HF/haTZ and MP2/6-31G*. B3LYP/6-31+G(d,2p) structures never deviate from the MP2/haTZ geometries by more than 0.44 kcal mol鈥? on the MP2/haTZ potential energy surface, whereas the errors associated with the HF/haTZ and MP2/6-31G* structures grow as large as 12.20 and 2.98 kcal mol鈥?, respectively. The most accurate results, however, were obtained with the two-body:many-body QM:QM fragmentation method for weakly bound clusters, in which all one- and two-body interactions are calculated at the high-level, while a low-level calculation is performed on the entire cluster to capture the cooperative effects (nonadditivity). With the haTZ basis set, the MP2:HF two-body:many-body fragmentation method generates structures that deviate from the MP2/haTZ ones by 0.01 kcal mol鈥? on average and not by more than 0.03 kcal mol鈥?.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700