Nucleation and Chemical Vapor Deposition Growth of Polycrystalline Diamond on Aluminum Nitride: Role of Surface Termination and Polarity
详细信息    查看全文
文摘
We have investigated the growth and atomic interface structures of diamond on aluminum nitride (AlN). The two-step chemical vapor deposition technique is used to control diamond nucleation density, crystal size, and AlN surface orientation and polarity. Highly uniform diamond layers with a nucleation density in the range of 105鈥?011 cm鈥? and a grain size of 0.1鈥? 渭m are fabricated. Crystallographically abrupt interfaces between polycrystalline diamond and single-crystal AlN(0001) layers have been observed via high-resolution transmission electron microscopy and electron energy-loss spectroscopy. A majority of the diamond crystals have been found to have the diamond(111)/AlN(0001) interface relationship. Atomistic models of the bonding mechanism at the heterointerface are used to elucidate experimental observations and the role of hydrogen plasma on the growth of diamond on AlN. Nonpolar and semipolar AlN surfaces have been found to have higher resistance to process plasma and led to better crystallinity of the diamond/AlN heterointerfaces. These results underline the potential of nonpolar and semipolar AlN surfaces for the growth of high-crystal quality diamond/AlN heterointerfaces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700