Asymmetrically Functionalized Antibody–Gold Nanoparticle Conjugates to Form Stable Antigen-Assembled Dimers
详细信息    查看全文
文摘
Biomolecular assays based on the aggregation of modified gold nanoparticles (AuNPs) have been developed to provide low detection limits and rapid results with a simple one-step, wash-free procedure. However, a relatively narrow dynamic range, low sensitivity, and poor precision due to time-sensitive readout limit the application of these assay platforms. In this work we synthesized asymmetrically functionalized antibody–AuNP conjugates that are rationally designed to overcome the limitations of aggregation-based immunoassays. Solid-phase synthesis was used to chemically passivate the majority of the AuNP surface and restrict antibody immobilization into a small area of the AuNP surface. These asymmetric conjugates assembled into dimers with the addition of antigen and were stable for over 24 h. In contrast, conventional antibody–AuNP conjugates which are symmetrically modified with antibody assembled into large aggregates that continuously increased in size with the addition of target antigen. These results suggest that asymmetric antibody–AuNP conjugates have the potential to significantly improve the analytical performance of aggregation-based immunoassays.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700