Direct Route to Well-Defined Poly(ionic liquid)s by Controlled Radical Polymerization in Water
详细信息    查看全文
文摘
The precision synthesis of poly(ionic liquid)s (PILs) in water is achieved for the first time by the cobalt-mediated radical polymerization (CMRP) of N-vinyl-3-alkylimidazolium-type monomers following two distinct protocols. The first involves the CMRP of various 1-vinyl-3-alkylimidazolium bromides conducted in water in the presence of an alkyl鈥揷obalt(III) complex acting as a monocomponent initiator and mediating agent. Excellent control over molar mass and dispersity is achieved at 30 掳C. Polymerizations are complete in a few hours, and PIL chain-end fidelity is demonstrated up to high monomer conversions. The second route uses the commercially available bis(acetylacetonato)cobalt(II) (Co(acac)2) in conjunction with a simple hydroperoxide initiator (tert-butyl hydroperoxide) at 30, 40, and 50 掳C in water, facilitating the scaling-up of the technology. Both routes prove robust and straightforward, opening new perspectives onto the tailored synthesis of PILs under mild experimental conditions in water.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700